Publications

Abstract (Expand)

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders-representing academia, industry, funding agencies, and scholarly publishers-have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.

Authors: M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J. W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. 't Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S. A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons

Date Published: 16th Mar 2016

Journal: Sci Data

Abstract (Expand)

The African annual fish Nothobranchius furzeri has over recent years been established as a model species for ageing-related studies. This is mainly based on its exceptionally short lifespan and the presence of typical characteristics of vertebrate ageing. To substantiate its role as an alternative vertebrate ageing model, a transcript catalogue is needed, which can serve e.g. as basis for identifying ageing-related genes.

Authors: Andreas Petzold, Kathrin Reichwald, Marco Groth, Stefan Taudien, Nils Hartmann, Steffen Priebe, Dmitry Shagin, Christoph Englert, Matthias Platzer

Date Published: 16th Mar 2013

Journal: BMC Genomics

Abstract (Expand)

BACKGROUND: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. RESULTS: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. CONCLUSIONS: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.

Authors: Kay Nieselt, Florian Battke, Alexander Herbig, Per Bruheim, Alexander Wentzel, Øyvind M Jakobsen, Håvard Sletta, Mohammad T Alam, Maria E Merlo, Firstname Lastname, Firstname Lastname, Edward R Morrissey, Miguel A Juarez-Hermosillo, Antonio Rodríguez-García, Merle Nentwich, Louise Thomas, Mudassar Iqbal, Roxane Legaie, William H Gaze, Gregory L Challis, Ritsert C Jansen, Lubbert Dijkhuizen, David A Rand, David L Wild, Michael Bonin, Jens Reuther, Wolfgang Wohlleben, Margaret C M Smith, Nigel J Burroughs, Juan F Martín, David A Hodgson, Eriko Takano, Rainer Breitling, Trond E Ellingsen, Elizabeth M H Wellington

Date Published: 28th May 2009

Journal: BMC Genomics

Abstract (Expand)

Taverna is an application that eases the use and integration of the growing number of molecular biology tools and databases available on the web, especially web services. It allows bioinformaticians to construct workflows or pipelines of services to perform a range of different analyses, such as sequence analysis and genome annotation. These high-level workflows can integrate many different resources into a single analysis. Taverna is available freely under the terms of the GNU Lesser General Public License (LGPL) from http://taverna.sourceforge.net/.

Authors: Duncan Hull, Katy Wolstencroft, Robert Stevens, Firstname Lastname, Mathew R Pocock, Peter Li, Tom Oinn

Date Published: 18th Jul 2006

Journal: Nucleic Acids Res.

Powered by
(v.1.9.0)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH