Web page: http://www.mib.ac.uk/
Country: United Kingdom
City: Manchester
Address:
Manchester Centre for Integrative Systems Biology, MIB/CEAS, The University of Manchester
Faraday Building, Sackville Street, Manchester M60 1QD
United Kingdom
Related items
Projects: SulfoSys, SysMO DB, Synthetic Biology Manchester Demo, FAIRDOM training
Institutions: Manchester Centre for Integrative Systems Biology, University of Manchester, School of Computer Science, University of Manchester, Autonomous University of Barcelona, HITS gGmbH
https://orcid.org/0000-0003-2130-0865Expertise: Software Engineering, Data Management, Software Architecture, Repositories
Tools: Databases, Java, Workflows, Web services, Taverna, Ruby, Ruby on Rails, linux, J2EE
Lead Software Engineer and Architect on the FAIRDOM team based in Manchester.
Developing SEEK and RightField.
SysMO is a European transnational funding and research initiative on "Systems Biology of Microorganisms".
The goal pursued by SysMO is to record and describe the dynamic molecular processes going on in unicellular microorganisms in a comprehensive way and to present these processes in the form of computerized mathematical models.
Systems biology will raise biomedical and biotechnological research to a new quality level and contribute markedly to progress in understanding. Pooling European research ...
Projects: BaCell-SysMO, COSMIC, SUMO, KOSMOBAC, SysMO-LAB, PSYSMO, SCaRAB, MOSES, TRANSLUCENT, STREAM, SulfoSys, SysMO DB
Web page: http://sysmo.net/
Silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation
Programme: SysMO
Public web page: http://sulfosys.com/
Organisms: Sulfolobus solfataricus
The main objectives of SysMO-DB are to: facilitate the web-based exchange of data between research groups within- and inter- consortia, and to provide an integrated platform for the dissemination of the results of the SysMO projects to the scientific community. We aim to devise a progressive and scalable solution to the data management needs of the SysMO initiative, that:
- facilitates and maximises the potential for data exchange between SysMO research groups;
- maximises the ‘shelf life’ and ...
Programme: SysMO
Public web page: http://www.sysmo-db.org/
Organisms: Saccharomyces cerevisiae, Lactic Acid Bacteria
Comparative Systems Biology: Lactic Acid Bacteria
Programme: SysMO
Public web page: http://www.sysmo.net/index.php?index=57
Systems analysis of process-induced stresses: towards a quantum increase in process performance of Pseudomonas putida as the cell factory of choice for white biotechnology.
The specific goal of this project is to exploit the full biotechnological efficacy of Pseudomonas putida KT2440 by developing new optimization strategies that increase its performance through a systems biology understanding of key metabolic and regulatory parameters that control callular responses to key stresses generated ...
Programme: SysMO
Public web page: http://www.psysmo.org/
Organisms: Pseudomonas putida
MOSES (Micro Organism Systems biology: Energy and Saccharomyces cerevisiae) develops a new Systems Biology approach, which is called 'domino systems biology'. It uses this to unravel the role of cellular free energy ('ATP') in the control and regulation of cell function. MOSES operates though continuous iterations between partner groups through a new systems-biology driven data-management workflow. MOSES also tries to serve as a substrate for three or more other SYSMO programs.
Programme: SysMO
Public web page: http://www.moses.sys-bio.net/
Organisms: Saccharomyces cerevisiae